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Abstract
This thesis is done in collaborationwith the SwedishDefense ResearchAgency
and investigates the learning capabilities of zero learning algorithms from a
war gaming perspective by applying them to the classic strategy board game
Risk. Agents are designed using the Monte Carlo Tree Search algorithm for
online decision making and is aided by a neural network that learns offline ac-
tion policies and a state evaluation function. The zero learning process is based
on the Expert Iteration algorithm, an alternative to the famous AlphaZero al-
gorithm, learning the game from self-play. To suit Risk, the neural network
used a flat state input representation and had five output policies, one for each
decision included in the game. Results show that zero learning could be used
to train the neural network such that its policy output improved performance
of the Monte Carlo Tree Search algorithm. Agent performance did however
not improve with further iterations of network training and the network failed
to learn a good scalar state evaluation function.
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Sammanfattning
Denna avhandling är genomförd i samarbetemed Totalförsvarets forskningsin-
stitut, FOI, och undersöker inlärningsmöjligheterna hos zero learning algorit-
mer utifrån ett krigsspelsperspektiv genom att applicera dem på det klassiska
strategibrädspelet Risk. Spelagenterna är designade att använda Monte Carlo
Tree Search algoritmen för löpande beslutstagande och stöds av ett neuronnät-
verk vilket lär sig en fix beslutspolicy och att utvädera spelets tillstånd. Zero
learning-processen är baserad på Expert Iteration algorithmen, vilken är ett
alternativ till den välkända AlphaZero algorithmen, och lär sig spelet genom
att spela mot sig själv. För att fungera för Risk så använde neuronnätverket en
platt representation av speltillståndet som indata och fem beslutspolicies som
utdata, en för varje typ av beslut i spelet. Resultaten visar att zero learning
kunde användas för att träna ett neuronnätverk på så sätt att dess beslutspolici-
es förbättrade spelstyrkan för Monte Carlo Tree Search algoritmen. Agentens
spelstyrka förbättrades dock inte med ytterligare iterationer av nätverksträning
och nätverket misslyckades med att lära sig en bra funktion för att utvärdera
speltillståndet.
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Chapter 1

Introduction

Artificial intelligence research can be said to have startedwhen JohnMcCarthy
coined the term in his invitations to a summer conference at Dartmouth Col-
lege in 1956. At that time it was about defining and developing concepts for
“thinking machines”, which were becoming part of a small set of different
fields in parallel with the ongoing development of the computer [1]. Since
then, artificial intelligence (AI) and its methods have branched far out and im-
proved drastically. Today, artificial intelligence systems have a daily impact on
our lives and its potential for improvement is seen as one of the most important
technology developments of the future.

A philosophical idea that has been driving the work on AI is the creation
of a super-intelligence that is far greater than the capabilities of us humans. It
is known that this goal comes with a large number of ethical problems apart
from the pure technological challenge, but in practice, we are far from this
goal. However, games is an area that has long been used as a platform for test-
ing AI algorithms and have step by step reached into the superhuman level. A
reason why games are well suited for AI development is that they are artificial
environments, which can be changed arbitrarily to include different charac-
teristics and challenges. Some games, like Tic-Tac-Toe, are trivially solved
by searching forward through all possible final outcomes, whereas games like
Checkers, Chess or Go are harder and require some sense of strategy.

One of the first published systems that could play games on an average
human level was created by Arthur Lee at IBM, who also participated at the
1956 conference. His work was done on the game Checkers during the 50s
and 60s and used search-trees and scoring functions as basis for the decisions.
The system was an early implementation of what is known as the alpha-beta
algorithm and was able to learn both through data from professional games
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2 CHAPTER 1. INTRODUCTION

and by playing the game against itself. On a high level perspective, this type
of learning is very similar to how games are learned with AI today. Following
his success, the focus shifted towards the grand game of Chess. This was a hard
challenge and it would take all the way until 1997 for IBM and their system
DeepBlue to win a six game match against the chess world champion Garry
Kasparov [2], thus taking AI to the superhuman level.

1.1 Deepmind’s leap
In 2016 the team at Deepmind and their algorithm AlphaGo managed to win
with 4-1 against one of the worlds best Go players, Lee Sedol. This was the
next major breakthrough for artificial intelligence in games. Go had long been
considered a pinnacle challenge and its solution was, at the time, estimated to
a decade further into the future. The AlphaGo system was an efficient combi-
nation of tree search methods, neural networks and reinforcement learning. To
reach their results, the algorithm was trained with data from 160,000 games of
professional human play and supplied with a set of handcrafted Go-features,
the rest of the learning was then done by self-play [3]. During the year fol-
lowing this publication, the algorithm was improved to the level that it could
learn entirely from playing against itself, tabula rasa. It only needed to know
the rules of the game. Deepmind named the new algorithm AlphaGoZero and
when played against AlphaGo, it won with 100-0 [4]. The remarkable thing
about this achievement was that they had found a general algorithm to beat Go.
With some further updates they created the fully generic general-purpose rein-
forcement learning algorithm AlphaZero. When tested on Chess it outplayed
the worlds best Chess program Stockfish after just four hours of training [5].

The development step from AlphaGo to AlphaZero was also done, inde-
pendently of Deepmind, by Thomas Anthony et al. [6] in the same time frame
for a different game. They proposed the Expert Iteration algorithm (EXIT),
which on a conceptual level is the same as AlphaZero, and tested it on the
game Hex where it surpassed the best program MoHex. With these new dis-
coveries, AI in games became both general and far more superhuman.

1.2 Thesis background
This thesis is done in collaborationwith the SwedishDefense ResearchAgency
(FOI). FOI is an agency that provides a wide range of expertise regarding tech-
niques to handle threats and vulnerabilities for the Swedish Armed Forces and
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the civil society. With the recent improvements of game AI, there is an inter-
est of investigating how AI algorithms can potentially be used as a decision
support system within war-gaming scenarios. Unlike board games, war games
are a field of games aimed to simulate real scenarios in order to find a good
strategy for the scenario at hand. These are games that have long been used
as analytic and educational tools within defence forces around the world. One
step of the investigation is to apply the new AI algorithms to games with war-
gaming characteristics.

1.2.1 Artificial intelligence in war-gaming
The application of artificial intelligence in war-gaming has had some publica-
tions in the recent years. J. Goodman et al. provide a thorough investigation of
war-game features and the progress of AI techniques along with recommenda-
tions of how these two subjects can be connected in future work [7]. Their key
finding is that the biggest challenge is to create an AI the understands the core
of war-games such that it does not require large development efforts for each
application scenario. Goodman also see significant potential benefits of de-
veloping these methods, mainly regarding training of military staff and better
decision making.

Development of artificial intelligence methods in war applications is how-
ever an ethically complex subject. The core issue is that the potential of AI has
been described as the third revolution in warfare, for which a large amount of
inhumane offensive actions follow [8]. These actions are related to the use of
lethal autonomous weapons that can acquire and engage targets without human
intervention. It raises the question if machines or humans should be making
the decision of who to kill and what can happen when machines fail to follow
their intended objectives. Using these weapons also reduces the cost of go-
ing to war by removing the need for military training and importantly the risk
of own casualties which would be very beneficial for terrorist organisations.
For war-gaming, these ethical questions are less crucial since the AI system is
used as decision-support for the humans in charge but it is still necessary to
maintain an ethical approach here.

To guard society from a devastating global AI arms race, the Future of
Life Institute has suggested a ban on offensive autonomous weapons, like the
international ban on nuclear weapons, and gathered over 4000 AI researchers
that support this view [8].
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1.3 Thesis purpose
The purpose of this thesis is to investigate the learning capabilities of zero
learning algorithms (EXIT and AlphaZero) when applied to one game with
war-gaming characteristics. The chosen environment is the classic strategy
board game Risk, which is a fictional military game about conquering the
world. Although not a war game, Risk provides relevant war-gaming features
such as

• battles between armies are decidedwith dices, introducing non-deterministic
outcomes where sometimes the army at a disadvantage wins,

• conquering of more areas gives the player access to additional army re-
sources at the next turn, a reflection of how military forces make ad-
vancements towards key positions.

From an AI perspective, Risk is interesting since each turn is a series of deci-
sions spread over three sequential phases rather than just one decision as for
Chess or Go. This difference, along with the random battle outcomes, yields
that the state can change far more between turns which can be a challenge for
search-based algorithms.

The goal is to use zero learning algorithms to design and train an agent that
reaches superhuman game-play level. The agent design is intended to be done
as close to tabula rasa as possible, although some trivial modifications will
be done to the game outside the perspective of the algorithm. Design is not
restricted to follow either EXIT or AlphaZero exactly but should modify them
to suit Risk. It is of further interest to achieve this goal as there currently are no
known advanced agent designs published for the game. There are also limited
possibilities of comparing the agent to other systems so estimates will be made
to see how the different sub components of the algorithm compare against each
other. The purpose of the report can be summarised in the following research
questions.

• What is the learning performance of zero learning algorithms when ap-
plied to the non-deterministic and large branching environment of the
classic board game Risk?

• What are the performance differences between playing Risk with a neu-
ral network agent, a tree search agent or a zero learning agent that com-
bines both?
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1.3.1 Scope
The project was limited to only assessing the performance of the algorithms
in a 1 vs. 1 scenario. This setting is how zero learning have been applied
for games before, and since the focus of the report is the Risk environment
rather than its additional multiplayer dynamics then these dynamics have been
removed. The prior judgement, based on how the game has a different structure
and results from An Intelligent Artificial Player for the Game of Risk by M.
Wolf [9], is that Risk is complex enough to try and learn even in the 1 vs. 1
setting.

Due to time limitations and the amount of computational resources avail-
able at FOI, the project was also limited to only the playing phase of Risk. The
initial setup with territory drafting and reinforcing, further explained in sub-
section 2.1.1, will therefore be randomized at the start of each game. Some
additional adjustments are made to the game in terms of which settings are
used, these are specified in section 4.1.

1.4 Outline
The remainder of this report is structured as follows. Chapter 2 presents gen-
eral knowledge of the game Risk and related work done in the field, both for the
game in specific and how comparable games have been approached. Chapter
3 describes the relevant theory for understanding the content of the project. In
chapter 4 the methodology is covered, motivating choices of game modifica-
tions, agent design, the learning process, and experiments performed. Chapter
5 presents the results which are followed by a discussion in chapter 6. The re-
port is summarised with a conclusion and short comments regarding future
work in chapter 7.



Chapter 2

Background

This chapter is intended to provide a general background of the game Risk and
give an insight in the prior attempts of creating a good AI for the game. It also
covers research done on other comparable games.

2.1 Game of Risk
Risk is a classic strategy board game for two to six players that was invented in
1957 by Albert Lamorisse under the name La Conquete du Monde. It was then
modified for the American market and published by Parker Brothers in 1959
as Risk Continental Game. Risk is a fictional war-game, played with pieces
representing armies that are used to attack and defend. The game board is a
map of the world, divided into 42 different territories across six continents as
shown by Figure 2.1. During the game, each territory is ruled by the player
who has armies in that territory and the objective is to conquer the world by
occupying all territories, eliminating the other opponents in the process. The
game also includes a set of 42 Risk cards, each representing a territory and
an army symbol, plus two wild cards that are used in various occasions of the
game.

The following section gives a brief overview of how the game is played,
further information and the official rules are provided by Hasbro1.

1Official rules for the game Risk https://www.hasbro.com/common/
instruct/risk.pdf

6
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Figure 2.1: Illustration of the standard Risk game map.

2.1.1 Game setup
At the start of the game, players receive 20 to 36 armies (troops), depending
on how many are playing. The territories are then assigned to the players by
taking turns of placing one army in any unoccupied territory. An alternative
is to use the Risk cards to randomize the assignment. The setup is completed
after the remaining armies have been placed in the occupied territories, which
is done in turns, placing one at a time, like the initial placements.

2.1.2 Taking a turn
Risk is a turn-based game and each turn a player goes through three different
phases. These are receive and place troops, attacking, and fortification. The
attack and fortification phases are optional and the attack phase continues until
the player decides to stop, or no more attacks are possible.

Receive and place troops

A turn is started by calculating the number of new armies to receive. There
are three different sources that adds to this bonus.

• The number of own territories.

• The value of continents occupied by the player.
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• The value of Risk cards, if traded in.

The territories yield one army for every three territories occupied, or three
armies if less than nine territories are occupied. If a player occupies all terri-
tories of a continent at the start of his turn then additional troops are received
according to the value of the continent, these continent values are specified on
the game board. The last army bonus is through trading in Risk cards that have
been gathered earlier. Each Risk card has an army symbol of either infantry,
cavalry or artillery. The cards are traded in as sets of three according to any
of the combinations in Table 2.1. The pile of cards also have two wild cards
which can be substituted for any of the symbols to form a valid combination.
The game can be played with fixed or progressive card bonuses. The fixed
bonuses are shown in Table 2.1 and the progressive rule is that the first set
gives four troops and increases with two for every next set until five sets have
been used, regardless of which player did the trading. The sixth set is worth
15 troops and every set after that is worth five more. The received troops are
then freely placed in any of the own territories.

Card Combination Value
Three Infantry 4
Three Cavalry 6
Three Artillery 8
One of each 10

Table 2.1: Different combinations of trading in Risk cards and their value for
fixed card bonus play.

Attacking

A player can choose to attack neighbouring enemy territories from own terri-
tories that have two or more armies. The attacks are done in sequential battles
of 3 vs. 2 where the attacker rolls three dices and the defender two, fewer dices
are used if there are less armies on either side. The highest outcome of each
side is compared and the attacker takes out one defending army if the value is
higher, defenders win equal outcomes. The second highest outcomes are then
compared the same way. After each battle, the player can choose to continue
the attack on the same territory by doing another battle, attack other enemy
territories with battles there or end the attack phase. If all defenders are taken
out in a battle the attacker chooses how many troops to move into the new
territory, always leaving at least one behind. For digital play, it is normal to
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remove the repeated decision of battling again and let the computer simulate
until one side has won to speed up the game, this is called blitz. At the end of
the attack phase, the player draws one Risk card if at least one new territory
was occupied.

Fortification

The last part of the turn is fortification which means that the player can chose
to move troops from one territory to another as long as there is a path of own
territories between them. The player always has to leave at least one army in
the territory where they are moved from.

2.1.3 Two-player Risk
The setup for two-player Risk is slightly different than for the normal multi-
player version. The game is here initialized with a third neutral player. At the
start, the two players and the neutral are randomly given 14 territories to place
one troop in. After this follows the initial reinforcement phase where players
take turns placing two troops in own territories and one in one of the neutral
territories until the three players have 36 troops in total across the board. It
is common that also this phase is randomized when playing on the computer
or in an app. From here on, the game continues as the multiplayer version ex-
cept that the neutral player is completely passive, it doesn’t receive any troops
to reinforce with, attack, nor fortify. This adjustment to the game lowers the
amount of territories occupied at the start from 21 to 14 which makes the
games a little longer and the strategic depth increases as it is up to the two
players to decide if they want to claim the territories of the neutrals or attack
the active opponent.

2.2 Related work
Zero learning algorithms like AlphaZero and EXIT are the center of this work
and together they have proven to produce superhuman results in challenging
zero-sum, combinatorial game domains (Chess, Go, Hex and Shogi among
others). Risk is however a substantially different board game where the strate-
gic challenges are also amplified by random initialization of the game and the
attack phase outcomes. At the current point in time, there have been no pub-
lications of applying zero learing methods to Risk, and on a further note, the
amount of scientific research on creating a clever AI for the game is limited.
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2.2.1 Prior work on Risk
In 2003, Jason Osborne published a Markov chain analysis for the battle sys-
tem in Risk [10]. The goal was to understand the probabilities of conquering a
territory and the expected loss of armies as a function of the number of attack-
ers and defenders. His results show that the attacker has an advantage even
when the number of attacking and defending armies are equal (conditioned on
there being at least five each) and that this advantage is increasing for larger
amounts of equal armies in the battle. Graphs for the probabilities of winning
were also presented.

State and decision complexity

Following the findings of Osborne, attempts were made to translate the knowl-
edge of Risk into an AI system. One important paper that addresses this chal-
lenge was written by Michael Wolf as his thesis in 2005. A key contribution
of this paper is the analysis of the game’s state and decision complexity. Risk
may have a game board and discrete state-space like Chess and Go but the way
the game is played causes the state-space to evolve very differently.

In a turn of Risk, the player receives new troops to place but there is no
rule that forces the player to attack. So, if all players continuously doesn’t
attack, then no armies will be lost in battle while new are added. The result
of this train of thought is that the state-space of Risk is theoretically infinite
[9]. This is not how the game is played in practice and Wolf show an example
calculation that yield a state-space of 1047 for a four player game with 200 total
armies across the board.

The decision complexity of Risk can be measured with the average branch-
ing factor, which represents the average number of states reachable from one
decision step at any point of the game. Wolf computes two approximations of
this factor, although defined as the average branching between start and end of
one players turn since it is a series of decisions, yielding 1033 and 1085. These
are notably large numbers and could be reduced down to 106 after some modi-
fications to the decision structure of the place troops phase. As a comparison,
the estimates for Chess and Go are 31 and 250 respectively. The massive num-
ber can be reasoned about just like theoretic lack of limit to the state-space.
Both the placement of troops and fortification phase requires the player to de-
cide the number of troops to place or move. For the case of receiving new
armies, each of these can be freely placed in any of the owned territories. This
yields that the number of valid actions (all different distributions of armies) for
just that phase is very large. The attack phase is less branching as there might
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only be a handful of territories possible to attack but here the random battle
outcomes still causes the set of states after finishing the phase to be somewhat
large. What is of matter is not the exact branching value but that the rules
allow for substantially larger branching, specifically for placing troops.

Artificial intelligence systems

Wolf also contributes with two AI agents, one basic player and one enhanced
player. The basic player chooses among its possible decisions by simulating
each, rating the outcome and greedily choosing the best option. The simula-
tions include no further look ahead and the rating is done with a linear eval-
uation function. This functions takes the game state and current player as
input and computes a set of handcrafted feature-values which are returned as
a weighted sum. Wolf states that the performance of this simple approach was
poor and one big problem was that it didn’t show any sense of coordination
between decisions within a turn. To solve this, the enhanced player received
additional features that were computed first to assess if a high-level plan would
be activated. Examples of plans were conquering a specific continent or elim-
inating a weak opponent. If a plan was activated, then actions according to
the plan were rated higher in the ordinary feature evaluation. Changes were
also made to the placing of troops phase such that it would evaluate the value
of placing multiple troops at once according to some simple distribution and
compare this value to the values of just placing one as the basic player. The
last and most significant change was that the weights for combining all features
were parameterized and learned with the reinforcement learning technique
Temporal-Difference learning. The performance results of these changes was
that the addition of high-level plans and tools to work towards them improved
the basic player by a factor of 60 according to his rating system. The learned
feature weights improved the performance 20 % further which made it capa-
ble of winning regularly versus human beginners, and occasional wins versus
more experienced humans. The main conclusion to take from this work is that
simple and handcrafted evaluation methods paired with weight learning can
be sufficient for a computer system to play Risk.

In 2013, a bachelor thesis was published by Manuela Lütolf at University
of Basel which also used features and TD-learning for Risk. His results were
similar to those of Wolf and he states that there are situations where the agent
is at a disadvantage due to it not looking further than one step ahead [11].

AlphaZero and EXIT are both based on the Monte Carlo Tree Search al-
gorithm. This algorithm was applied to Risk in 2009 but limited to only as-
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sessing the performance of the method for drafting territories during the initial
setup [12]. A similarity their work has to the later zero learningmethods is that
they aided the tree search algorithm with an automated evaluation function to
score options during the tree simulation. This function was just a simple lin-
ear regression trained by supervised learning rather than a full neural network.
Different from zero learning, they generated their data for supervision only
once and without the tree search algorithm. The results of this method was a
bot that outperformed all of the strong bots available among Lux Delux agents,
a framework for playing Risk. Their bot was however only different from the
agents of the framework during the initial draft and used one of the agents un-
modified during the playing phase. The conclusion is thus that advantages of
game winning significance can be achieved already during the setup phase of
Risk and that this type of methods work well, indicating promising potential
for zero learning the whole game.

2.2.2 Settlers of Catan
Settlers of Catan is a similar multiplayer strategy board game where the strate-
gic focus is about resource management to expand the own territory while un-
der the influence of random dice rolls. For this game there have been multiple
publications of creating a sophisticated AI agent. One of these publications,
written by Pieter Spronck et al. in 2009, investigates the applicability of the
Monte Carlo Tree Search algorithm [13]. Their work simplified the game such
that the algorithm didn’t deal with any hidden information and the agent was
restricted from trading with other players. The intention of these changes was
to reduce the complexity of integrating the game with the algorithmwhile only
causing minor changes to the overall strategic game play. This type of idea can
also be applied to Risk. To measure the performance of the MCTS agent, it
was compared to the JSettlers framework which is widely used and provides
a heuristics based agent that at the time, was considered as one of the best for
the game. The results show that the MCTS algorithm performs well and fre-
quently beats the JSettlers agent in a multiplayer setting. Some tests were also
done against humans where the results were unreliable but concluded as the
agent showing reasonably strong play. On a whole, the algorithm was marked
as "a viable approach for other multi-player games with complex rules", thus
further establishing the potential of the method for Risk .
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2.2.3 War-gaming with AlphaZero
In connection to the interest of war-gaming, there was an article published in
November 2019 by G. Moy and S. Shekh where they applied AlphaZero to a
simple war-game, Coral Sea [14]. Coral Sea is a two-player asymmetric game
with multi-step turns played on a hexagonal grid. The structure of this game
make it very different from Chess and Go, and with the multi-step turns, it has
similarities to Risk. Their work focuses on exploring how the differences in
game characteristics, such as, problem representation, goal asymmetry, and
limited strategic depth as well as lack of significant computational resources
affect the performance ofAlphaZero. To overcome the investigated challenges,
they propose that AlphaZero is bootstraped with supervised learning, incor-
porating heuristic knowledge in the action selection during self-play. Results
show that AlphaZero was able to learn the game to the level that it outper-
formed the heuristics which it was aided by. This work show that AlphaZero,
with some modifications, is capable of learning to play games with significant
structural differences compared to previous applications. It does however not
include technical details of the system design so it can only be considered as
an indication that AlphaZero will also work for Risk rather than as a method-
ological blueprint.



Chapter 3

Theory

The purpose of this chapter is to cover the theoretic subjects required to un-
derstand and analyze zero learning algorithms. Its first section describes the
reinforcement learning field with according general concepts. The next two
sections goes more into detail with the Monte Carlo Tree Search (MCTS) al-
gorithm and the neural networks that are the two parts of zero learning decision
making. The last section then describes zero learning with a focus on the EXIT
algorithm.

3.1 Reinforcement Learning
Reinforcement learning (RL) is a field of machine learning that covers the task
of learning what action to take in order to maximize some measure of reward.
It is an iterative process where the learning agent is not told what to do but has
to find which decisions are the best by trying them. From a general learning
perspective, the field can be labeled as a computational approach to learning
from trial-and-error interaction. This type of learning is applicable to a wide
range of tasks and has been of most interest for sequential decision making
problems. The extra challenge of sequential decision making is that it might
not be sufficient to take good decisions for the current situation as some actions
can have indirect consequences on actions and rewards available at later stages.
The systems thus needs to take actions such that their sequence achieves the
long-term goal.

Reinforcement learning problems might also take place within intelligent
environments, take for example a game where an RL agent plays against hu-
mans. If the agent acts predictably then humans are able to notice and change
their play-style accordingly, thus dynamically changing the environment’s re-

14
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sponse to the agents actions. These are challenges that also need to be consid-
ered in the decision process.

The iterative learning of an RL agent is stored in policy and value functions
which are used to dictate the agent’s behaviour, further explained in section
3.1.2. Since these are trained using self generated experience, the system needs
to make sure that this set covers enough states and action decisions to find
optimal solutions, this is known as the exploration versus exploitation trade-
off. A reinforcement learning algorithm is therefore any method that specify
both a structure for generating experience and how the experience should be
used to incrementally change the policy and value functions such that their
estimates give better behaviour.

Further insights into the reinforcement learning field can be found in the
book Reinforcement Learning: An Introduction by Sutton and Barto which
this and the following section are based on [15].

3.1.1 Markov decision processes
The Markov decision process (MDP) is a mathematical formulation for mod-
eling sequential decision making problems. MDP is based around dividing the
agent’s interactions with the environment as a sequence of discrete time steps,
t = 0, 1, 2, 3... . For every time step, the agent receives a representation of
the environments state, st ∈ S, a measure of reward, rt ∈ R, and is to decide
which action, at ∈ A, to take. This description of the interactions yields a
state, reward and action trajectory

s0, a0, s1, r1, a1, s2, r2, a2, s3, ...

which can either be episodic and finite or infinite, depending on the task.
Games played from start until there is a winner are an example of finite and
episodic tasks, one episode corresponds to one game.

The transition dynamics of an MDP is modelled as a probability distribu-
tion over states and rewards reachable from the current state and chosen action
according to the following equation

p(s′, r|s, a) = P(St+1 = s′, Rt+1 = r|St = s, At = a). (3.1)

This equation assumes the Markov property which is a restriction on the state
to fulfill p(st+1|st, at, ..., s0, a0) = p(st+1|st, at). The Markov property means
that the current state contains everything necessary for understanding the next
transition. Equation 3.1 is used to model all information of the environment
and can be used to compute the expected reward function r for state-action
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pairs (s, a). This function is a property of the environment in combination
with how the reward signal is specified and is defined as

r(s, a) = E[Rt+1|St = s, At = a] =
∑
r∈R

r
∑
s′∈S

p(s′, r|s, a). (3.2)

It is a summation of the reward signal r over states s′ reachable from (s, a). The
goal of the agent is to maximize the accumulated reward from this function.
In the context of games, r(s, a) normally only yields non-zero rewards for the
state-action pairs that causes a transition to terminal states, indicating that one
player has won.

3.1.2 Policy and value functions
To achieve the goals of the MDP problem formulation, the agent needs to act
such that its trajectory yields the highest long-term reward. A learning agent’s
behaviour is specified by a policy function which represents the mapping from
states to the actions that it should take. Formally, this mapping is defined as a
probability distribution, π, over possible actions for each state of the environ-
ment according to the following equation

π(a|s) = P(At = a|St = s). (3.3)

During learning of the policy function, the quantification of which actions
yield most long-term reward can be done with the use of a value function.
This is a function that for a given state estimates howmuch reward an agent can
expect to accumulate from that state and onward. The estimate does however,
depend on the policy function since it is the policy that controls which states
and rewards are encountered later. Therefore, the value function, v, is defined
together with π as

vπ(s) = Eπ[Rt+1|St = s], (3.4)

where Eπ is the expectation over rewards gathered when following policy π.
Policy and value functions can either be represented in tabular form or with

a function approximator. The tabular form is simply a table of trainable values
for each state and chosen action combination the system can be in, memorizing
experience seen at each slot. It is therefore only suited for tasks with small and
discrete state-spaces since the table needs to be of size S xA to even represent
a policy. A function approximator is instead a method that takes the variables
of the state representation and applies a mapping, using a set of parameters θ,
from the input to an output policy or value. By using a function approximator,
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the set of trainable values reduces to just the parameters of the approximator.
An even better reason for using a function approximator during training is
that this method yields the property of generalizing from states that have been
visited to those that haven’t been seen, thus requiring even less experience.
The downside of the method is that the approximator needs to be appropriately
complex such that it can reflect the unknown true function [1].

3.2 Monte Carlo Tree Search
Monte Carlo Tree Search is an online decision making algorithm that uses
Monte Carlo random simulations to bias a tree search towards promising ac-
tions. The algorithm was introduced in 2006 in a paper by Coulom where he
applied it to Go and achieved major improvements compared to previous ver-
sions of Monte Carlo search methods [16]. The algorithm was additionally
updated in the same year by Kocsis and Szepesvári with their introduction of
the Upper Confidence Bounds applied to Trees (UCT) algorithm that guides
the selection of actions during search [17]. Since then, the algorithm has been
an active field of research and translated into state-of-the-art programs for a
variety of games. Much of its later variations and enhancements can be found
in Browne’s survey of the algorithm along with references to 250 other MCTS
publications [18]. Two favourable properties of the algorithm is that it is not
dependent on domain-specific knowledge and the tree search is asymmetric.
The algorithm only requires that the domain where it is applied is able to gen-
erate the set of possible actions to push the state of the tree search forward. The
asymmetric property is that the tree is free to expand deeper asymmetrically
rather than layer by layer as in a breath-first search. The MCTS algorithm can
thus focus on areas of the tree that are believed to be most favourable.

3.2.1 Algorithm description
The MCTS algorithm is an algorithm which for each decision builds a game
tree and uses the search statistics to compute a policy over currently available
actions, it does not depend on any previously learnt offline knowledge. Build-
ing of the game tree is an iterative process starting from the current state of
the game, where each child node is a future state reached by the action which
labels the edge between parent and child. The process of building this tree
is divided in four steps, selection, expansion, rollout and back-propagation.
Each of these steps are done once per iteration and will hereby be called an
MCTS simulation. When the requested amount of simulations are done, the
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algorithm returns the action below the root that was taken the highest number
of times during search. Following is a short summary of the algorithm steps,
further details and variations can be found in [18].

Selection

During selection, the algorithm starts from the root and successively selects
children until a leaf node is reached. Nodes are selected with the UCT in-tree
policy function that uses node reward and visit statistics to trade-off explo-
ration with exploitation. This is the most important step of the algorithm as it
decides how the tree grows forward into the state-space, choosing which ac-
tions to evaluate more than others. The UCT function is, when using notation
from [6], defined by

UCT (s, a) =
r(s, a)

n(s, a)
+ cb

√
log n(s)
n(s, a)

. (3.5)

where r(s, a) is the total reward gathered by simulations passing through the
node, n(s, a) is the node’s visit count and n(s) is the total visit count of the
node’s parent. cb is a constant which controls the amount of exploration al-
lowed by the second term. The dynamics behind this term is that it decreases
for the action selected, due to the logarithm, and at the same time increases
for all other actions. This yields that actions with a low visit count, and likely
high influence of variance in the first term, are eventually selected over actions
that have a large amount of visits. In each node, a child that has the highest
UCT-value is selected.

Expansion

The leaf node reached by the selection phase can either be visited once or
un-visited. If the reached node is visited once then the tree is expanded by
creating child nodes for each available action from the state of the leaf node.
One of these child nodes are then randomly selected. Any selected and un-
visited nodes are not expanded at this time and instead move onto the next
phases which will mark them as visited.

Rollout

The new node reached after selection and expansion is evaluated by playing
the game from the node state until termination. This is the Monte Carlo ran-
dom simulation, here referred to as a rollout, and is done according to a default
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policy, commonly just selecting actions at random. The rollout can also be in-
terrupted early, which is know as a cut-off. This requires an accurate evaluation
function so that the non-terminal state can be scored.

Back-propagation

The outcome of the rollout phase yields a score that is back-propagated up
the tree, along the path taken during selection, to the root. Incrementing each
node’s reward statistic with the result from the rollout, accounting for which
player had the turn at the node state, and increasing their respective visit statis-
tics by one.

3.2.2 Chance nodes
Chance nodes are a method for modelling stochastic state transitions during
search, they are a special kind of node that appear as an extra sub-level of
the tree. When the search expands leaf nodes with actions that have non-
deterministic outcomes, chance nodes are created. The difference between
their state and the parent is that the corresponding action has been chosen but
not executed. As the chance node is then expanded, this generates all possible
state outcomes as new nodes and selection is done by sampling from the prob-
ability distribution over the outcomes [19]. Figure 3.1 shows a visualization
of how chance nodes are integrated in the tree.

Figure 3.1: Modelling of stochastic events in tree search using chance nodes.
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3.3 Neural Networks
Neural networks (NN) are a mathematical construction based around how the
neurons in our brains are believed to work. During the last decade, they have
proven to yield very successful results within multiple fields of machine learn-
ing problems.

Neural networks are used to approximate arbitrary functions f ∗. Formally,
they define a mapping y = f(x;θ) which is trained such that the parameters θ
yield the best function approximation. The training is done by pushing f(x) to
match f ∗(x) using a data set of points x1, ...., xn where each point has a target
output y ≈ f ∗(x) [20].

Within reinforcement learning, neural networks are incorporated as very
strong approximators for both policy and value functions.

3.3.1 Structure and training
A neural network can be simply described as a directed graph of artificial
neurons. Each neuron processes input values x received from previous neurons
as a linear combination of trainable weight parameters w and returns a scalar
value describing the neurons response to the input which is passed forward in
the network. This computation is described by

σ(
∑
i

wixi + b). (3.6)

where b is an additional trainable parameter and σ() is a non-linear function
known as the activation function. Figure 3.2 visualizes how the directed graph
is structured as layers of neurons. The first layer receives a fixed representa-
tion of data that the network processes in the hidden layers. A prediction is
computed in the output layer where the activation function is changed to suit
the task. There are also other configurations of neural networks, for example
Convolutional Neural Networks (CNNs) that uses convolutional filters instead
of Equation 3.6, these will not however be explained further here.
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Figure 3.2: Structure of fully connected neural network with multiple hidden
layers.

Training

Neural networks are trained using a loss function, l, and an optimization al-
gorithm. The loss function compares the output prediction of the network, ŷ,
with the corresponding target data, y, and returns a scalar measure of their dif-
ferences. The optimization algorithm takes the results from the loss function
and computes how the weights should be changed such that the model better
fits the data. To prevent overfitting, the data is split into training and validation
data where the validation data is separate and used to estimate the loss perfor-
mance on untouched data. The training is done in epochs, for each epoch, all
training data is used to update the parameters. Training continues for a fixed
number of epochs or until the validation loss is constant within some margin.
These details are among the basics of supervised machine learning and are
further described in any machine learning book.

3.4 Zero Learning
Zero learning is known as the family name for algorithms based on the design
concept of Deepmind’s AlphaZero algorithm. These are methods that com-
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bine the Monte Carlo Tree Search algorithm with neural networks to learn
strategic boards games entirely from self-play. The EXIT algorithm concep-
tualises the idea of zero learning as having an expert player and an apprentice
which together perform iterations of the learning process. It is done by playing
the game, letting the expert (MCTS) encounter multiple situations for which
the search decision statistics are stored, thus generating a data set of the ex-
perts knowledge. The apprentice (NN) then takes the data and trains to match
it, yielding a better network. The key with this method is that the online policy
building process of theMCTS expert can be improved by incorporating the of-
fline policy stored within the apprentice network. Rather than initializing each
new level of the tree without any knowledge it is now initialized with a prior
bias from the policy of the network. The MCTS expert thus uses the network
as a tool to choose even better moves during the next data set creation, which
allows the apprentice to further mimic the expert. They reinforce each other
to iteratively learn the game from zero.

3.4.1 Network design
Although EXIT andAlphaZero are general algorithms for learning board games,
the network design is unique for each game domain. The common factor be-
tween games is that all networks take a representation of the game state, s, and
output actions probabilities, p, and a scalar value v according to (p, v) = fθ(s).
It is one network which branches into two output heads after a set of hidden
layers. The actions probabilities are known as the policy head and the value
output is thus the value head.

For the games where AlphaZero and EXIT has been applied, the state was
represented as a 2D image with multiple layers where the shape of each layer
matches the game board. The networks could then be designed using hidden
convolutional layers which are able to utilise the spatial representation for a
better understanding of the state.

The output of the policy head is adapted to the specific game domain by
changing its size such that it matches the total amount of actions in the game.
At each input state, only some of the actions are possible so the network needs
to filter illegal actions for the output probabilities to be correct.

The value head represents the network’s estimate of the current player’s
probability to win the game and is not game dependent. The estimate is in the
range (-1,1) where 0 corresponds to 50 % chance of winning.



CHAPTER 3. THEORY 23

3.4.2 The Expert Iteration algorithm
This section is focused on describing the EXIT algorithm since the majority
of this work is based on this approach to zero learning, relevant differences of
AlphaZero are included.

The formal definition of the EXIT algorithm is shown by Algorithm 1,
taken from T. Anthony et al. [6]. The first two lines represent random ini-
tialization of the neural network and the network being integrated to the tree
search agent. The for-loop is then the core of the algorithm where each step
hides further design details.

Algorithm 1 Expert Iteration
1: π̂0 = initial_policy()
2: π∗0 = build_expert(π̂0)
3: for i = 1; i ≤ max_iterations; i++ do
4: Si = sample_self_play(π̂i−1)
5: Di = {(s, imitation_learning_target(π∗i−1(s))) | s ∈ Si}
6: π̂i = train_policy(Di)
7: π∗i = build_expert(π̂i)
8: end for

Self-play data sampling

To generate self-play data points, the EXIT algorithm repetitively plays the
game using an exploration policy. For each game, one state is selected where
the expert is asked to do 10000 MCTS simulations for the action decision.
The game is then played until termination and the outcome (±1 for win/loss)
is stored along with the selected state and statistics of the action decision. Only
storing one decision per game removes any correlations between data points
which would otherwise reduce the learning. The exploration policy is defined
by the policy of the most recent apprentice network, which yields much faster
play than the tree search. However, for the first iteration of data sampling, the
network hasn’t been trained so it is replaced by MCTS with 1000 simulations.

Data set management

For each EXIT iteration, the sampling of self-play data results in a new data set
Di which is used in the training step and then thrown away. An online version
of EXIT, also presented in the same paper, improves the data set management
by aggregating new data sets to that of the previous iteration, thus reducing
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time required for creating new and sufficiently large data sets. This version
then either passes all data or a large buffer from recent iterations to the training.
Both of the online version’s alternatives showed better performance than the
formal data set method.

Training

Both EXIT and AlphaZero train the policy head using cross-entropy loss

lp = −
∑
a

n(s, a)

n(s)
log[π̂(a|s)], (3.7)

where n(s, a)/n(s) is the target frequency of action a being chosen by the
expert during tree search, π̂(a|s) is the predicted policy distribution from the
network using input s. This function is only zero for actions where the target
is zero and therefore won’t return zero loss if the prediction and target is equal
but instead reach a minimum.

For the value head, EXIT uses Kullback-Leibler loss

lv = −v̂log[v]− (1− v̂)log[1− v], (3.8)

and AlphaZero uses mean-squared-error loss

lv =
1

N

N∑
i=1

(v̂i − vi)2, (3.9)

where v̂ is the predicted value and v is the target. Both of these functions
have the property of non-linearly scaling the loss with an absolute difference,
returning more loss where the difference is larger.

Integrating network with tree search

The most recently trained network is incorporated into the tree search algo-
rithm as a further bias towards promising actions. For EXIT, the integration
is done by adding both a policy term and a value term to the UCT formula of
Equation 3.5 as follows,

UCT (s, a) =
r(s, a)

n(s, a)
+ cb

√
log n(s)
n(s, a)

+wa
π(a|s)

n(s, a) + 1
+wvQ̂(s, a). (3.10)

Both new terms have their respective hyper-parameters wa and wv and Q̂(s, a)
represents a backed up average of network value estimates through the edge
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s, a. An additional detail of EXIT is that the value term is only included in the
UCT formula after a few training iterations.

AlphaZero doesn’t add new terms to the UCT formula but instead modifies
the formula to

UCT (s, a) =
r(s, a)

n(s, a)
+ cb

√
n(s)

π(a|s)
n(s, a) + 1

. (3.11)

The second term is similar to EXIT’s policy term except that wa is replaced
by

√
n(s) and the exploration constant cb is kept. The value head is integrated

as a replacement for random rollouts, the factor r(s, a) is thus the total backed
up value estimates for simulations through s, a. AlphaZero also modifies how
the UCT value is computed for unvisited nodes. The first term is in that case
skipped so the UCT expression is

UCT (s, a) = cb
√
n(s) π(a|s) (3.12)

for nodes where n(s, a) = 0.
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Methodology

This chapter covers the approach taken to apply zero learning methods to learn
Risk. The first section specifies the game settings that were used . The follow-
ing section describes the agent design, motivating choices for the network and
state space representation as well as details of the MCTS structure. The learn-
ing process is then described, detailing how self-play data was generated and
used. The chapter concludes with a description of the performed experiments.

4.1 Game settings
As specified by the scope of the project in subsection 1.3.1, Risk games are
played in a 1 vs. 1 scenario with an additional neutral player according to the
official rules of two-player Risk. Games are initialized such that each of the
three players start with 14 random territories and a total of 36 troops spread
across these. Selection of player to start between the two active agents is done
by rolling of a die.

With these initial settings specified, the rest were chosen under the inten-
tion of limiting the amount of decision types and decisions per turn while
maintaining most of the core strategic challenges. The reason for this intention
is that design of a zero learning agent for Risk faces problems when actions are
chosen through the use of either MCTS or a neural network policy. MCTS is
a computationally demanding algorithm which can make playing games time-
consuming, this effect is particularly noticeable for Risk due to the amount
of unique decisions per turn. For the network, each different type of decision
requires its own policy head and fraction of the training data. The following
settings were chosen:

• Cards are automatically traded in whenever possible.

26
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• Hidden information is removed from the game by playing with open
cards.

• Cards yield a fixed amount of troops according to Table 2.1.

• Attacks are made in blitz-mode (i.e. the battle is automatically played
until there is a winner) and all armies except one are moved from the
attacking territory to the defending territory.

The strategic disadvantage of making the card decision automatic is that play-
ers are not able towait each other out with trading in their cards. For two-player
Risk, this is however only relevant if progressive card bonuses are chosen and
is thus believed to be outweighed by the benefit of removing this decision
type and one decision per turn. With automatically traded cards, it is nat-
ural to tone down their effect on the game by playing with open cards and
have fixed bonuses. Progressive bonuses would otherwise have the potential
of out-scaling the amount of armies received from conquering territories and
continents properly.

For the blitz-mode attack phase, agents are now restricted from the ability
to abort an ongoing battle if the outcome is poor. This option is essentially
only in the game because it is a board game played manually with only 3 + 2
dices. With a computer system, the outcome can be directly computed for any
amount of attackers and defenders. This way of playing is also common when
playing Risk in the official app RISK: Global Domination or through web-
based implementations. It is therefore considered as only a marginal playing
disadvantage when compared to how many extra decisions would need to be
made with the MCTS. Another benefit is that it makes the game more like how
humans think about attacking, that it is done under the intention of conquering
a territory.

The attack phase also contains the decision of how many to attack with,
how many to defend with, and how many to move into the new territory after
a victory. With battles done in blitz-mode, the trivially correct decision is to
attack or defend with the amount of armies that yield the highest chance of
winning. This amount has been proven to always be all armies [10], which is
why these two decisions have been removed from the agents of this system.
The decision of how many armies to move forward is set to all because it
removes a decision type, it could however be argued about howmany occasions
this decision opens possibilities for stronger play.
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4.2 Agent design
The multiple phase turns and variable phase lengths of the Risk environment
introduce new challenges for zero learning methods. With their base in learn-
ing tabula rasa and suitability for board games they still leave game specific
details unspecified. The design of a zero learning agent for Risk is therefore
mostly a process of adapting the decision structure to the strengths and weak-
nesses of Monte Carlo Tree Search and neural networks. Agents need tools to
effectively pick out strong and strategy coherent actions among a large amount
of options.

4.2.1 Agent action space limitations
To play Risk, agents need to take decisions for each of the game’s three phases.
The decision complexity of the place troops and fortification decision is how-
ever so large that, without any modifications, it will cause problems when
generating a policy over all unique actions.

For the place troops phase, the issue is a function of how many troops are
considered in the decision. If it is modeled as a one-step decision of distribut-
ing all troops onto the own territories then this decision has

TN

N !
(4.1)

unique distributions, where T is the number of own territories and N is the
amount of troops to place. By instead seeing the phase as N decisions of
placing one, then each of these decisions can be taken with a policy spanning
over only T < 42 possible options. This method does however add N −
1 decisions which is an apparent drawback for MCTS-based agents. Taking
inspiration from the approach of Wolf, the decision structure was designed
according to the latter method where agents also have the option of placing
either all or half (rounded up) of the available troops per decision. This allows
the phase to be finished in one or more decisions, without theoretically limiting
the agent, while only adding two more legal options per own territory to the
policy.

Another problem of this phase is that the number of legal actions is still
unnecessarily large, especially at later stages of the game where most of a
player’s territories are grouped. With the official rules, agents can place troops
in any of the own territories, but for the following attack phase, agents can
only attack from territories with two or more troops that are also bordering an
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enemy territory. Troops placed in territories without bordering enemies can
thus not be used in the rest of the turn, which is why agents were limited to
only placing troops where there are enemy neighbours. Themodification stops
poor agents from taking particularly bad decisions and reduces the branching
of the tree search, but it is also an incorporation of human knowledge which
slightly moves the system away from being tabula rasa.

For the fortification phase, the decision is to choose which two territories
to move troops between and how many troops that are moved from the source.
Since there is no limit on the number of troops in the source territory, the rep-
resentation of how many to move needs to be a discretization over fractions
of the total. In terms of total possible fortifications in the game, disregarding
the discretization, there are 42 territories that can fortify armies to any of the
other 41, which yields a total of 42 ∗ 41 = 1722 combinations for fortification
source and targets. When including the discretization, it will therefore be 1722
unique actions for each discretization option. As the size of the neural net-
work’s fortification policy has to include all possible actions of the phase, the
discretization over fraction of troops was limited to two options, either all or
half of the troops available to move. There is thus a total of 1722∗2+1 = 3445

actions for moving all or half, where the additional one represents the action
of not fortifying.

During play, the amount of legal fortifications was also limited to only
target territories with neighbouring enemies. The limitation follows the same
reasoning as for the placement phase and arguably has an even larger effect
of reducing the branching here. The purpose of fortification is to strengthen
territories which are potentially attacked by enemies, so it is natural to limit
the action space to only these. It does however, occur situations in Risk where
it is better to fortify internal territories but these are rare compared to the extra
branching they would cause.

4.2.2 Monte Carlo Tree Search
The Monte Carlo Tree Search algorithm was implemented according to its
theoretic description in subsection 3.2.1 and follows the rules and limitations
of previous sections.

For the attack and fortification phases, the tree was modified to put more
emphasis on the high-level decision of taking an action compared to skipping
and ending the phase. It was structured as a two level hierarchical decision
where the search first expands two nodes representing whether it wants to take
action or skip. All legal active actions are then expanded under the node for
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taking action. Upon finishing search, the action with most visits is chosen, if
this is to take action then the algorithm automatically chooses the most vis-
ited attack or fortification action below, thus maintaining the same amount of
searches.

The random battle outcomes of attack phase actions was modelled with
chance nodes. Since the explicit probability distribution over outcomes as a
function of attackers and defenders is unknown, although possible to compute,
they were implemented with an alternative method. Each time search passes
through a chance node, one sample is drawn from the outcome distribution by
use of the game simulator. Followingly, the sample is compared to outcomes
of previous transitions and if not seen before, then a new node is expanded
with state corresponding to that of the outcome.

The default policy of simulation rollouts was set to choosing actions at
random and attacks and fortifications are done with a probability of 75 % and
90 % respectively. These parameters were set by manually tuning random
agents to a "strong" behaviour.

To reduce computational time, rollouts were only played for a few turns and
then scored using an evaluation function. For MCTS, this is known as rollouts
with cutoff. The evaluation function was manually designed as a comparison
of the active players resources. To keep the function simple, limiting poor
design choices, no additional feature design was done. A state is evaluated by
first computing the potential resources of both players, that is, the total amount
of own troops plus current territory and continent bonuses. These two values
are then normalized by their total and mapped from the span (0, 1) to between
(-1, 1). Rollout length was set to eight turns to maintain some of the random
characteristics without playing for too long.

4.2.3 Network design
The network was designed as a multi-input, multi-output model with one pol-
icy for each game decision and a value head estimating the current player’s
chance to win. Five policy heads were used, three for the different phases and
two additional for deciding to attack (or fortify) or not, matching the hierar-
chical structure of the tree search. The outputs were defined as follows:

• place policy, size 1x126,

• attack policy, size 1x165,

• fortify policy, size 1x3444,
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• decide attack policy, size 1x2,

• decide fortify policy, size 1x2,

• value head, size 1x1.

The attack policy represents all combinations of attack source and targets that
follow from the neighbouring relations of the map.

Input representation

The state representation at the input was split into four variables, one for the
state distribution of troops and territory rulers, one for the cards of each player,
and then two phase specific variables. The input also included five additional
variables, each representing a one-hot encoded mask over the currently legal
actions at the policy outputs.

The previous networks of AlphaZero and EXIT game applications have all
represented the state as a two-dimensional image of multiple layers, mapping
a position on the board to a spatially corresponding position in the image. This
approach is however not suited for Risk as the board is a graph of territories
and their neighbour connections rather than a grid. Since the graph (map) is
static throughout the game and to simplify design, the state was modeled as a
flat representation of size 1x126 where index

• 0 - 41 is the distribution of troops for the opponent player,

• 42-83 is the distribution of troops for the current player,

• 84-125 is the distribution of troops for the neutral player.

All troop counts where normalized by the total amount of troops on the board.
This representation is alternating to the view of the current player, alleviating
the need for an additional variable or any post processing of value head output.

The card input variable was specified by a 1x8 representation where the
first four indexes are the card counts of the opponent player and the last four are
cards of the current player. Card counts were normalized by three as this is the
maximum amount that can be held for any one type before being automatically
used at the start of the next own turn.

The two phase specific variables were one for the current amount of avail-
able troops to place, normalized by total troops on the board, and one which
specifies if a territory has been conquered previously in the attack phase, in-
dicating if a card will be drawn when it ends.

The state input is thus fully defined by the nine variables



32 CHAPTER 4. METHODOLOGY

• state distribution, size 1x126,

• cards, size 1x8,

• available troops, size 1x1,

• attack successful, size 1x1,

• place policy mask, size 1x126,

• attack policy mask, size 1x165,

• fortify policy mask, size 1x3444,

• decide attack policy mask, size 1x2,

• decide fortify policy mask, size 1x2.

Layer configuration

The network was designed as a feed forward network with three fully con-
nected hidden layers, taking the state distribution as only input. Each hidden
layer is followed by batch normalization and a dropout layer with parameter
set to 0.5. After the hidden layers, the card input is concatenated and then this
information is passed to the different output heads.

For the place policy head, the available troops input is first added by con-
catenation, then follows a fully connected layer of 126 nodes, matching the
specified policy size. Before applying softmax activation to compute the pol-
icy, a lambda layer is used to filter illegal actions according to the place policy
mask included at input.

The attack and fortify policy heads have the same structure except that the
attack head instead adds the attack successful input and the fortify head doesn’t
add any inputs more than the cards.

The decide attack and decide fortify heads both take the same input as their
respective action policy heads and have two fully connected layers, where the
first is followed by batch normalization and dropout.

The value head concatenates both of the phase specific variables for a full
representation of the state information and passes this through a fully con-
nected layer, batch normalization, dropout and then a final fully connected
layer with one node and tanh activation function to get the correct output in-
terval.

All of the fully connected layers at the output use L2 regularization set to
0.01.
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4.3 Learning process
The zero learning training process was based on the EXIT algorithm presented
in Algorithm 1. This structure was chosen over AlphaZero because it is easier
to work with and requires less computational resources. Modifications were
made, taking some inspiration from the method of AlphaZero, and are detailed
below.

4.3.1 Self-play data generation
Each algorithm loop iteration started with generating a new data set of expert
self-play decisions along with the game outcomes. Games were played in par-
allel on a computational cluster using an apprentice exploration policy for fast
play. Due to the amount of resources available, data set sizes were limited to
between 12 and 14 thousand games per iteration.

The first iteration was played using an MCTS agent with 300 simulations
as the fast apprentice policy and 10 000 simulations at the expert decision.
Later iterations were then played by choosing actions with highest probability
(greedy choice) from the policy of the latest network, the expert decision was
computed using 10 000 MCTS simulations with the network integrated in the
tree search selection formula. The network’s decision of choosing to attack
or fortify was done by sampling from the two option distribution rather than
greedy choice. It was observed that the greedy policy would often attack until
no further attacks were available, thus leaving the own territories with one
troop which prohibits fortification.

The three different phases of Risk reduces the effective size of the training
data set. As the expert is given a game state reached by the apprentice explo-
ration policy, the expert will only compute target statistics for the policy of
the current phase. Each data set is therefore a distribution over three types of
target data points with their corresponding states at the input. This distribution
was chosen as uniform such that all policies would receive equal amounts of
training data. A self-play game is thus done by first randomizing which de-
cision type to save and how far into the game it should be saved. The target
statistics for the two additional policies of choosing to attack or fortify can be
gathered for any attack of fortify phase state as they are done in the same tree
search.
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4.3.2 Training details
The networks were trained using the new data set of the self-play step as in
the standard version of EXIT, no data aggregation or buffers were used, re-
sulting in a new network with updated weights. Data sets were split into 90 %
training and 10 % validation data. At training start, weights were set to those
of the most recent network, the first training iteration used randomly initial-
ized weights. The incremental progression of EXIT iterations could then be
verified by monitoring the decrease of validation loss from training start to
finish.

Loss functions were set to cross entropy loss for the policy heads (Equa-
tion 3.7) and mean-square-error loss (Equation 3.9) for the value head. For
the optimizer, the Adam algorithm was chosen [21], using a learning rate of
0.001. Training was finished using early stopping with a patience of 10.

Training improvements were also explicitly monitored by playing games
between networks. To estimate the policy performance of each new network,
200 games were played against all previous networks using greedy action se-
lection across all five policies. The value head output behaviour was observed
by playing a handful of games between networks. At the start of each turn, the
value head estimate for the current player was computed, generating a plot of
its estimates throughout each game. The manual cutoff function of the MCTS
rollouts was used as reference plot.

4.3.3 Integration of network in tree search
The integration of the network in the tree search selection phase was done as
a combination of how EXIT and AlphaZero work. The problem of the EXIT
UCT version is that nodes are initialized with a value of infinity, forcing the
algorithm to test all children at least once. For the large branching of Risk,
this would put an upper limit on how deep the tree can search regardless of
the network’s quality. On the other hand, AlphaZero removes the exploration
term of the original UCT formula which takes away the possibility to weigh
the policy term against the exploration term when the network improves, as
done by EXIT.

The resulting choice for Risk was to retain the original exploration term,
adding the policy term of AlphaZero with the benefit of keepingweight param-
eters in the same range and integrating the value head output as a replacement
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to random rollouts when activated. This yields the UCT formula as

UCT (s, a) =
r(s, a)

n(s, a)
+ cb

√
log n(s)
n(s, a)

+ c1
√
n(s)

π(a|s)
n(s, a) + 1

(4.2)

following the notation of EXIT, also defined in subsection 3.2.1. Nodes were
initialized without the first two terms, reducing the expression toUCT (s, a) =
c1
√
n(s) π(a|s) as inAlphaZero. cb and c1 are constant weight parameters that

were manually tuned to give a good balance between exploration and exploita-
tion across the different decision types. The first data set generation (without
network integration) used cb = 0.3 and later iterations used cb = 0.5 and
c1 = 1.5. The value head was activated, replacing random rollouts, after six
training iterations.

4.4 Agent performance experiments
The zero learning process has three types of agents, network agents, a tree
search agent, and zero learning agents which can be compared against each
other.

Playing full games with zero learning agents were for the implementation
time-consuming so one strong version was chosen. Selection was done by
playing a tree search integrated with the first network (a zero learning agent)
against tree searches with the other networks that were generated before the
value head output was included in data generating experts during training. For
each agent comparison, 480matches were played and the tree search used 1000
simulations, the value head output was not included.

Performance of adding the value head to training was observed by playing
the winner of the previous selection against zero learning agents using all net-
works of the value head training iterations. These new agents were played for
240 matches with the value head replacing rollouts and 480 matches without
it activated as a reference, tree search simulations were kept at 1000.

The agent types were compared by playing a round-robin tournament be-
tween networks, tree search and the selected zero learning agent. Three net-
works were used, the first, the last of policy training, and the last of the training
process with value head included. Action selection was set to greedy for all
policies. The tree search and zero learning agents used 1000 simulations and
UCT weight parameters cb and c1 were the same as during training. Each
comparison was played for 240 games.
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Results

Results of this thesis were limited by the computational resources and time
frame of the project.

5.1 Network training
The overall network training process showed that networks had problems learn-
ing from the target data. One limiting factor was that the process could only
be carried out for six iterations with the policy integrated into the tree search
before validation losses were observed as flat during training. At this point,
only the place policy had its third decimal decrease. The value head was then
integrated as replacement to the random rollouts and training continued for
two more iterations. Table 5.1 shows the results for playing the eight versions
of network weights against each other. Firstly, the table shows how network 2
lost all games versus network 1 and itself, indicating that something was off
with how it attacked. Secondly, the column for network 6 shows good results
versus networks 1 through 4 compared to prior columns, which does not align
with the indication of not learning due to validation losses being flat. The
columns for network 7 & 8 then show an increase in win rate for row networks
when compared to the columns of network 5 & 6, indicating that training on
data influenced by the value head reduces policy performance.

36
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Table 5.1: Network match data, showing win-rates for row network. Main
diagonal is the network playing itself and is a reference of variance from 0.5

Network Net 1 Net 2 Net 3 Net 4 Net 5 Net 6 Net 7 Net 8
Net 1 0.51 1.0 0.53 0.57 0.44 0.36 0.48 0.49
Net 2 . 1.0 0.55 0.46 0.45 0.32 0.49 0.42
Net 3 . . 0.51 0.42 0.41 0.35 0.42 0.48
Net 4 . . . 0.52 0.34 0.34 0.47 0.42
Net 5 . . . . 0.49 0.55 0.53 0.58
Net 6 . . . . . 0.44 0.52 0.56
Net 7 . . . . . . 0.56 0.46
Net 8 . . . . . . . 0.48

The value head behaviour tests of Figure 5.1 show further indications of
poor performance from the value head. Estimates tend to be above or below
the reference manual evaluation function and once games have been played
to a state with characteristics recognisable by the network, the estimates are
very close to either 1 or -1. Neither of these state estimation functions are the
true estimation function but through the comparison, it can be stated that the
network reach 1 or -1 too early and stay there or return inconsistent predic-
tions between turns. Take for example Figure 5.1b where the game starts well
for red, then evens out to around equal and after some turns, red wins. The
network overestimates the lead, drops down to a certain loss once the player
resources evens out, and then goes back to a certain win. The black player
stays at estimating a loss but at least has a small increase where the state is
equal.
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(a) (b)

(c) (d)

Figure 5.1: Comparison between value head estimates of network 8 and man-
ual state evaluation function throughout games. Solid lines represent the man-
ual function and dashed lines are the network, red and black are for the respec-
tive players.

5.2 Agent performance
The first agent performance test was to find the network with best weights for
a zero learning agent. Due to the odd results of network 2 in Table 5.1 it was
excluded from testing. Results of Table 5.2 show that using network 1 in the
tree search marginally wins over the first three and then plays equal versus
network 6. With these results, the first network was chosen as the best zero
learning agent for its performance relative to training amount.
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Table 5.2: Win rates for playing an EXIT agent using network 1 versus later
networks of training steps without influence of value head.

EXIT vs. EXIT1000 EXIT1000 EXIT1000 EXIT1000
EXIT Net 3 Net 4 Net 5 Net 6

EXIT1000 Net 1 0.569 0.566 0.542 0.495

Table 5.3 shows the results of playing EXIT1000Net 1 against agents using
the two networks that were influenced by the value head during training. Inte-
gration of the value head clearly decreases agent performance, which is why
further training was stopped. It is also noteworthy that the agent marginally
lost versus network 7 & 8 when only their policy was used, which is an im-
provement over Table 5.2.

Table 5.3: Win rates for playing an EXIT agent using network 1 versus agents
integrated with the two networks that were influenced by the value head.

EXIT vs. EXIT1000 EXIT1000 EXIT1000 EXIT1000
EXIT + Value Head (VH) Net 7 Net 8 Net 7 + VH Net 8 + VH

EXIT1000 Net 1 0.434 0.450 0.762 0.892

The results for playing EXIT andMCTS agents versus networks are shown
in Table 5.4. Both tree search methods outperform all networks and the dif-
ferences between networks is only minor, with network 6 yielding the best
result in both match-ups. For the comparison between EXIT1000 Net 1 and
MCTS1000, the EXIT version won with a win rate of 72.5 %. The overall
result is thus that a tree search guided by a policy network improves playing
performance, subsequent networks had problems improving the performance
any further, and all networks could be beaten by the original tree search when
played on their own.

Table 5.4: Win rates for EXIT and MCTS agents versus different networks.

Tree vs. Network Net 1 Net 6 Net 8
EXIT1000 Net 1 0.872 0.814 0.879
MCTS1000 0.755 0.679 0.719
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Discussion

Applying zero learning methods to Risk is a task of learning multiple poli-
cies and a state evaluation function by using a tree search to search through a
heavily branching tree of multi-step turns. While the game structure presents a
challenging task, it was expected that agent performance would reach human
levels or better as prior examples of zero learning have done. Results does
however show issues limiting continuation of the learning process. As these
results are based on only a portion of the typical amount of data for zero learn-
ing, it is only possible to see indications of what is working and what is not
rather than definitive conclusions about the method’s applicability for Risk.

For the network policies, the results are a bit inconclusive. Both the test
of playing networks against each other in Table 5.1 and the test with networks
against tree searches in Table 5.4 suggest that network 6 is best. The first test
does however have a lot of varying results within the table so it is uncertain to
draw conclusions, even if 200 games were played in each match-up. Contrary
to the suggestion, the comparison between different EXIT agents in Table 5.2,
which is the intended use of networks for the project, show that network 1 is
better than later networks up until network 6 where it is equal. The training
steps might therefore have made the policies better but not enough to improve
performance of zero learning agents further. What is clear, is that the network
policies have learned to play the game. When played on their own against tree
search methods they win up to at most about a third of matches and integration
in tree search yields a 72 % win rate over standard tree search.

For the state estimation learning of the network’s value head, the results
are easier to interpret but also worse. The network fails to learn a function
that accurately predicts the win rate for the state of the current player. The
network behaves more like a classifier for which player will win rather than
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returning continuous estimates of how far each state is fromwinning or losing.
While these "classifications" might look accurate, it is not the behaviour that
is wanted. Following these observations, performance of zero learning agents
was significantly reduced when the network replaced random rollouts (with
cutoff) for search state evaluation.

There are multiple possible explanations for why only these results could
be achieved.

Starting off with the network, it was designed using a flat state input rep-
resentation and had only a few fully connected hidden layers for understand-
ing the state before branching to the policies. With the low amount of ob-
served learning, it is believed that the state input representation was not suffi-
cient. It lacks the spatial representation of how territories are positioned on the
board and their neighbouring relations. Although static throughout all games,
these relations need to be implicitly learned. The alternative is to use a two-
dimensional grid representation, like prior zero learning publications, but that
would require the grid to be manually designed, translating the map layout to
approximately according grid positions which would also include empty posi-
tions where there are no territories. As for the network size, more and or wider
hidden layers could potentially have resulted in better learning but was set to
a low amount such that the generatable amount of training data would suffice.
Another design drawback was that only one EXIT learning process could be
carried out, so the network layer configuration and hyper parameters had to be
specified at the start from learning performance on the data set generated by
the MCTS apprentice of the first iteration. The project was therefore limited
from network redesign and most hyper parameter tuning.

The poor behaviour of the value head could likely have been improved
by aggregating data sets before each training step. It is trained using targets
of either 1 or -1 but is intended to predict the win rate between these values.
With larger data sets, there are more input states, where some have similarities
but their target values can be different. To reduce training loss during network
optimization, the network would in these cases need to predict somewhere in
the span between targets, thus pushing the learning in the right direction.

For the MCTS, the main subject of discussion is the design and potential
performance issues of the UCT formula in the selection phase. With the cur-
rent design, there are two hyper parameters, cb and c1, which are used to con-
trol the level of exploration and influence of the network policies. During the
self-play data generation process, the MCTS should, using these parameters,
distribute its search selections such that the resulting distribution corresponds
to how good each action is believed to be. The problem with Risk is that there
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are multiple policies, where the unknown true distribution of each policy can
have very different characteristics. Some decisions can have many legal ac-
tions but only a few that are good whereas some have few but similarly good
actions. Using the same two parameters for all policies could therefore have
limited the algorithm’s flexibility to generate appropriate training data target
distributions.

The decision of integrating the value head into the UCT formula as a re-
placement to random rollouts appeared as the most reasonable design for zero
learning agents. A network has the theoretic ability of learning a strong state
estimation function which should outperform information gained from ran-
dom play outcomes. Using both, as in EXIT, defeats the purpose of achieving
increased algorithm speed through only network state evaluation. In this case,
the network did however not have good conditions for learning the evaluation
function. Also, the comparison of performance between rollouts and value
head of this project is not entirely fair. The rollouts were aided by a manu-
ally designed cutoff function, which, judging from Figure 5.1, seemed to yield
good evaluations.

To finish the discussion, it is valuable to include a subjective performance
analysis of agents, relating them to human performance, which is something
that has not been in focus for formal quantification during the project. It
was observed that the tree search method had clear signs of understanding
the game, managing to place troops and attack along a coherent strategy. A
portion of the decisions could be judged as sub-optimal, which under fair ini-
tialization allowed humans to regularly beat the agents. Agents usually placed
all troops in one territory at the start of their turn and the fortification deci-
sion was mostly poor. The major challenge of agents however seemed to be
the decision of stopping the attack phase at an appropriate time. They tended
to be either passive, only doing some attacks, or very aggressive, attacking
wherever possible. Getting this decision right had a large influence on playing
performance.
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Conclusion

The conclusion of this thesis project is that zero learning methods, slightly
aided by human knowledge and adaptations, could be used to train a neural
network such that the network action policies improved playing performance
of the Monte Carlo Tree Search decision making algorithm. Agent perfor-
mance did however not improve with further iterations of network training
and the network failed to learn a good scalar state evaluation function. In a
comparison between policy networks and tree search agents, all iterations of
networks were beaten in over two thirds of matches played.

7.1 Future work
Following the conclusion, zero learning can be applied for Risk but requires
more research before superhuman performance is achieved. The network needs
an input representation and layer configuration that is better suited for the lay-
out and action space of the game. The learning process should be done using
larger amounts of data or designed based on the process of AlphaZero, play-
ing games with the MCTS rather than an apprentice and saving all decisions,
in addition to improvement suggestions of the discussion chapter. Apart from
these ideas about future research approaches, it is also relevant to investigate
the behaviour of the MCTS and see how it is affected by the branching and
multi-step turns deeper into the tree.
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